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The quasi-reversibility regularization method for a
Cauchy problem for the Laplace equation

Juanjuan Pu, Xiangtuan Xiong

Abstract— In this paper, the Cauchy problem for the
homogeneous and nonhomogeneous Laplace equation in a strip
domain is discussed. Where the Cauchy data at X =0 is given,
and the solution is found in the interval (0,1). The corresponding
error estimation is obtained by a new quasi-reversibility
regularization method with a appropriate regularization
parameter selection.

Index Terms— IlI-posed problem; the Cauchy problem for the
Laplace equation; Quasi-reversibility regularization; Error
estimate.

. INTRODUCTION

The Cauchy problem for the Laplace equation arises from
many physical and engineering problems such as plasma
physics [1], cardiology [2] and seismology [3] all require the
solution of a Cauchy problem for the Laplace equation. For
example, certain problems related to the search for mineral
resources, which involve interpretation of the earth’s
gravitational and magnetic fields, are equivalent to the Cauchy
problem for the Laplace equation. The continuation of the
gravitational potential observed on the surface of the earth in a
direction away from the sources of the field is again such a
problem.

It is well-know that, the Cauchy problem for the Laplace
equation is severely ill-posed. A small change in the Cauchy
data may result in a dramatic change in the solution. Usually,
there are no solution that satisfy Cauchy date, and even if it
exist, does not depend continuously on the initial data.
Therefore, numerical computation is very difficult. We need
some special regularization methods to solve this ill-posed
problem. Many regularization methods have been proposed
before. Such as Fourier regularization method [4], Fourth
order modified method [5], Central difference regularization
method [6], conjugate gradient method [7], discretization [8],
etc.

In this article, we consider the following Cauchy problem in
a strip region [9]:

uxx+uyy:01 XE(O,l),yED,
u(0,y)=e(y), yed, (L.1)
u, (0,y)=0, yel,

It is a classical example of ill-posed problems given by
Hadamard in his famous paper [10]. We want to seek the
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solution in the interval (0, 1) for problem (1.1). In this article,
we will solve the problem (1.1) by a quasi-reversibility
regularization method. This regularization method was
proposed in reference [11]. And later, it was widely used in
reference [12,13,14,15].

To solve the problem (1.1), we need some known facts.

Firstly, let @(&) denote the Fourier transform of the
function ¢(y) defined by

o(@)= [ ot ay, 12)

The corresponding inverse Fourier transform of the

function (&) is

1 = i
o= 5= [ p(&)ede. (13)

In this paper, ||| denote the L*(0 ) norm , equivalently,
by the Parseval formula

© 2 1

le|=(J |o0)| d&)2.
and we actually have the measured date ¢; (-) satisfy
le() -5 Q)< 6. (15)

For problem (1.1), we assume that there exists an a
priori bound

(1.4)

Jlu(x,-)|<E. (L6)
Now, we assume there is a unique solution of
u(x,y) ,and ¢(),u(x,)eL?(0) . Application of Fourier

transform technique to problem (1.1) with respect to the
variable y yields the following problem in a strip region:

U (%, ) —[&7 u(x,£) =0, xe(0,1), £ €L,
u(0,8) = (&), fell,

ux(0,&) =0, Eell.
It is easy to see that the solution of problem (1.7) is

u(x,&) = p(&)cosh(x|&)),

so, the solution of problem (1.1) is given by

u(x,y) = %J‘Z p(&)cosh(x|E)e¥ dé.  (1.9)

1.7)

(1.8)

Notice that the function cosh(x|&]) — o0 ,as & —> 0.

Therefore, function cosh(x|£[) is unbounded. So, problem

(1.1) is severely ill-posed, it is impossible to solve the problem
(1.1) by classical method. Then, we will use a new
quasi-reversibility regularization method to solve this
problem.
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Il. THE QUASI-REVERSIBILITY REGULARIZATION
METHOD FOR THE HOMOGENEOUS LAPLACE
EQUATION AND ERROR ESTIMATE

Consider the following problem based on the problem
(1.1) in a strip region:

Uy +Uy =0, xe(0,1), yel,
u0,y) +aud,y)=p;(y), yel, (2.1)
u,(0,y)=0, yel.

Where « is regularization parameter, and O<a <1,

o > O denotes the noisy level.
By using the Fourier transform technique to problem
(2.1) with respect to the variable Yy yields the following

problem in the frequency space:

s (%,€) —|& u(x,£) =0, xe(0,1),&ell,
U(O,§)+QU(1,§) :§05(§)1 é:eu 1 (22)
ux(0,£) =0, gell,
The problem (2.2) can be solved as follows:
u(x, &) =c,e™ +c,e, (2.3)
There is the boundary condition as follows:
U8 +auL)=p;(&), Eel, o
ux(0,&) =0, cel,
Combining (2.3) with (2.4), we get
{cl(1+ aelly+c,(1+ ae ) = p(&), £ el 5
[¢le, ~[¢]e, =0, ged,
e 9s5(&)
From (2.5), we know ¢, =¢, = - a(ej"g‘ " e"é‘) ,
therefore
u(x,&) = ?,(c) @< +ekh, (26

2+ a(ell + e
Define the regularization solution of problem (2.2) as follows:
5 2
Ua(X,f) — goé'(g)
2+a (el +e)

By using the inverse Fourier transform technique with
respect to the variable y ,we have

205(£)

cosh(x|&)).  (2.7)

us(x,y) = «/_'[°02+a(e5 _m)cosh(x|§|)eiy5d§,
(2.8)
And we have
2¢(¢)
U (X, &) = P )cosh(x|§|) (2.9)

Lemma2.1l. If 0<x<1,0<a <1,then the following
inequality holds

oA .
——<a (- x)( j : (2.10)
1+ el 1-x

o
Proof. Set h(|&) = —7 then
el

1+ ae®)?
If|&,| was the zero point of h'(|£]) then:

X
X . o X
2 e el =g X(—j :
1-x 1-x

It is obvious that |&| is the point of maximum value, then

x x Y
h(|§|)=1+ae‘§‘ _1+ae‘§°‘ = (1_X)(§j . (2.12)

Theorem2.1. Let u(X,Yy) be the solution of problem(1.1)

h'(&£]) = , (2.11)

ael =

R E R

with the exact input data @(y) and u’(X,y) be the
regularized solution of (2.8) with the noisy data ¢ (y) , If the

noisy data @ () and exact data ¢(y) satisfy (1.5) and there
holds a priori bound (1.6). If the parameter « chosen

. ) N
according to a = — ,then, we have the error estimation:
1

Juxy)-
Here C is a constant.
Proof. Using Parseval formula and triangle inequality, we have

Ju(x,y)—-ul (x.y)]

“Jutee)-vzx e

[ (x&) - v (x,&) v (x.) -8 (x|
sHu( E)—uq (X, 5)” ua(x,g)—uz(x,g)“
=l +1,.

We first give the estimate of I, ,combining (1.8), (2.9)
with Lemma 2.1, we have

1 =Ju(x¢)-ua (x.6)
¢ (&)cosh(x|&) -

uZ (x,y)| <4csE . (2.13)

(2.14)

2 )(p(f)cosh(x|§|)H

2+ ekl +e

_ ¢(g)cosh(x|g|)[1

2
2+ (e +e‘§)]

COSh(X|§|) a(e‘?ﬂ_’_e*\f‘)
cosh([£]) 2+ a (el +e4)

el re 21 (e 4eH)
ale¥ +e) |

2+ (e e ))|

< 2aasup(ij< 20"E (1~ X)(LJX
- 1+aed)” 1-x)

&ell

= lp(&)cosh(|&])

ex":‘ + e_x“f‘

= lp(&)cosh(|&])

= lo(&)cosh (&)=

(2.15)
Now we estimate |, ,combining (2.7), (2.9) with Lemma 2.1,
we have
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- ua(x,g)—ui(xyﬁ)u

pote)cosn(xiz) 20,2
2+ ekl + o)

_ 2 cosh(x|§|)((p(§)—(/’5(§))H

2+ ekl +e)

del , gl
:2+a(e§+e‘5)e ze ((/)(5)_%(6))“

( Xl j
<26 su e
b 1+ ae‘é‘

<260~ (1 x)(ﬁ)x.

N

&)cosh(x|&]) "

2+a e‘g‘ redl) |

(2.16)
Combining inequality (2.14), (2.15) and (2.16), if select
a= :1 estimation (2.13) becomes
Juxy)-ud (x.y)]
“Juixe)-us (e
o) —ua (x,8) v (x.8)-ul (x€)|
<Ju(x&) ~ua (x, )] #fue (1) vz (x. )

gzal—xElu_x)[Lj +25a—x<1_x>(ij
1—Xx 1—Xx

<4CSYE).
(2.17)
Here C is a constant independent of & and E, .

Now we discuss the error estimate at x=1. from (1.8),
(2.7) and (2.9), we can obtain

u(1,&)=gp(&)cosh(|2]), (218)

Ue (L,E)= 29(¢) cosh(|&]), (2.19)
2+ a6l +el)

uo (L&)= 20,(£) cosh(|¢]), (2.20)
2+ a6l +e)

In order to obtain the convergence of error at x =1 ,we give a
new a priori assumption:

P
u(Lé&)@+&%)2 (2.21)

<E,, (p>0).

L*(R)
Theorem2.2. Let u(l, y) be the solution of problem(1.1) at

x =1 with the exact input data ¢(y) and u’ (X, y) be the
regularized solution of (2.8) at x=1 with the noisy
data @5(y) , Assume the noisy data ¢;(y) and exact
data ¢(y) satisfy (1.5) and there holds a priori bound (2.21).

If the parameter o chosen according to a:\/g ,then we
have the error estimate:
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p

2

1 1
Ju@y)—ul @ y)|<52+E, max {254,

In—
Js
(2.22)
Proof. Using Parseval formula and triangle inequality, we
know

Juy)-ug @ y)

=Hu(1§) us (1.8)]

o e TG PRV ETATG ) (CP
<u&)-ve @ +ue @&) v &)
.—J1+J2.

We first give the estimate of J, ,combining (2.18),(2.19)
with (2.21), we have

=fu@e)-u. @we)

=lp(£)cosn J2]) - —22L)

2+ale +

= ¢(§)005h(|§|)(1—

_ a (el 4 e) )¢(§)cosh(|§|)

2+a(ef +e

5 cosh (|§|)H

2
2+a(el+e™) H

8 ol P :
_ a(ed yed) )(1+§2) z(1+§2)z¢(§)cosh(|§|)H

2+a(ef +e

k1 4 a-lél
<E, sup a(e +e ) 1 ,
If we set
f(&)= ,

2+a(e‘§‘ +e"‘f‘) (1+§2 )2

it is easy to see that

p p
: A 2
(i) f(&)<(1+&) 2 <|f < -1 = 1|
a Vs
1,1
i 4 coa( LV <oqrm2si e tint
(i) f(&)<2ae 320{0{} <20%2:=26*, |§|< Ina.

Then we have
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p

1
J; <E, max{254,

= (2.24)

Js

Now we estimate J, ,combining (2.19) with (2.20) we have
]

Ue (1.E)-us (18)|

2|22 cosn(je)-

2+ale +e)

|l 2cosh(]&]) -
——)((p(é) 05(2))

2+ ekl + e

In

J, =

205 (&)
2+ale+el)

oot

(el 4 g7l)

- )((/)(5)—%(5))“

2+ (el +e

el g7kl
<dsup (e +e) |<é
zer |2+ (el + e‘é‘)‘ a

So
1

J, <62, (2.25)
Combining inequality (2.23), (2.24) with (2.25), and if
select o = \/5 ,we can obtain

1 1
lu@y)-us (1 y)| < 52+E, maxq 254, 2

In——=

NG

I1l. THE QUASI-REVERSIBILITY REGULARIZATION
METHOD FOR THE NONHOMOGENEOUS LAPLACE
EQUATION AND ERROR ESTIMATE

Consider the following new problem based on the
problem (1.1) in a strip region:

Uy +Uy = F(X,Y), xe(0,1),yell,
u(0,y) =o(y), yell, 3.1)
UX(O,y)ZO, yEU

By using the Fourier transform technique to problem
(3.1) with respect to the variable Yy yields the following

problem in the frequency space

U (%, &) — e u(x, &) = F(x,&), xe(0,1),&ell,

u(0,8) = (%), gell, (3.2)
ux(0,¢$) =0, cel,
The solution to the homogeneous equation of problem (3.2) is
Uo(x,&) = p(&) cosh(x|£]), 3.3)
Now, set the particular solution to problem (3.2) is
Up =V,U1 +V,Uz2. (3.4)

Here u1=e"*,u, =™l is two basic solution to the
homogeneous equation of problem (3.2), then we have

_U1 us |:Vl'} { 0 i| ]
T = , ie.
L UJ Vo | L F(%¢)

[ ex‘é‘ e_xm V4 0
{ }H } (3.5)
e el |Lva] [ (x4
It is easy to see that
eély; +e vy =0,
X ’ —X] ’ f Xl (36)
ey — ey = —(|§|§) :
Then, we have
= Il c e:) s
(3.7)
1 f(S 1(5,8) sl
=— ds,
R T
Combining (3.4) with (3.7), we can obtain
1 sinh| (x—s)|&
u, :IO f(s,¢&) [(x=9) |st (3.8)

¢l

It is easy to see that

u(x,&)=uo(x,&)+up
= p(&)cosh(x|e]) + [ £ (5.€)

|¢]
(3.9)

By using the inverse Fourier transform technique with
respect to the variable y ,we have

u(x,y) = J—j " [o(&)cosh(x[2])

RRCSCEE R,
(3.10)
According to (3.9), there exists
inh| (1—
U(1.€)=p(&)cosh(|&])+ [ 1 (sf)%ds,
(3.11)
Then

p(&)=

(3.12)
In order to obtain the error estimates, we give the
following a priori assumption:

Jlu(L)| <™.
Lemma3.1. For 0<s<1,and £ell
inequality hold.

(3.13)

, the following
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sinh[ (1-s |§|]
2]

Lemma 3.2. Set A(|&]) = —Jj f(s,)

1 s\z:\

sinh[ (1-s)|¢[] i
g

1 2 -
and set .[o‘ f (s, 5)‘ ds < me ! here m, is a constant, for

fixed S, and £ el ,we have

smh (1-s |§|]
|10
sinh[ (1-5)

2
:.[jo —Iof(s,rf)Tds dé

[ S s) ] " e
h ste[o,l] |§| ] -[o‘f( ’5)‘ d ]d§

< J‘j:o mlez(l_s)‘g‘e_g‘g‘d 5

[ me g,
Equivalently,
|A(E)|<Jm, =m. (3.14)

here m,, m,, mare constant.

Consider the following new problem based on the
problem (3.1) in a strip region:

Ug +Uy, = f (x,y), xe(0,1),yel,
u(0,y)+au(Ly)=es(y), yel, (3.15)
u, (0,y)=0, yel,

By using the Fourier transform technique to problem
(3.15) with respect to the variable y yields the following

problem in the frequency space:

U (%, &) =& u(x.&) = f (x.&), xe(0.1), €01,
u(0,8)+au(Le)=9s($), Eell,
ux(0,£)=0, Eell,

(3.16)

The solution to the homogeneous equation of problem (3.16)
is
2?5(5)

Uo (X, &)=
(%) 2+ (e +e
We know the particular solution to problem (3.16) is
1 sinh[(x—s |§|]
up =IO f(s.&) K

Then, we can obtain the following regularization solution

)cosh(x|§|), (3.17)

s, (3.18)
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205 (5)

)
« (X, &)= h
te (%) 2+a(e‘§\+e—\§\)cos () (3.19)
1 sinh[( & '
+.[of(s’§) [|| |H
and
 29(¢)
e 8= e e )
(3.20)

(s smh[x s|§|}
b1

By using the inverse Fourier transform technique with
respect to the variable y ,we have

205 (5)
ug (X, y) = \/_Iw[2+a (elél 4 gé)

[ 1(s) S'”h[x sJietl, ]‘V‘fdg.

(3.21)
Theorem 3.1. Let u(X,y) be the solution of problem(3.1)

cosh(x|¢])

with the exact input data ¢(y) and ug(x, y) be the
regularized solution of (3.21) with the noisy data ¢ (Y) .

Assume the noisy data ¢ (y) and exact data ¢(y) and exact
satisfy (1.5) and there holds a priori bound (3.13). If the

. o
parameter o chosen according to o = VR then we have the

error estimate:

||u(x,y) (x,y ||<2C(2+ j&l MX. (3.22)
Proof. using Parseval formula and triangle inequality, we have
||u (x,y)-u’ xy)||
o) -ul k)
[ (Xé) o (68 +ua (x.8) v (x.8)] 629
<[u(x.&)-va (x ) +ue (00 -u (.|
=L +L,.

We first give the estimate of L, ,combining (3.9), (3.12),
(3.20), Lemma 2.1 with Lemma 3.2, we have
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L =u(x8)-ua (x.&)|

=p(&)cosh (x|&]) - 2+a2((:§9?e_§)603h(X|§|)
_ ¢(§)cosh(x|§|)(1_ 2+a(e§ +e) H

ol ) ||

2+ (e 1))

=lo(&)cosh(x|é])

a(ex‘g‘ + e_x“f‘ )

2+ a(ef petd)

(s sinh[ (1-s)|¢|] .
Io f( ’5) |§| d

u(Le)+

Xkl
<2a sup —_—
1+ aem

M+ —_flf(s,g)smh[(l_sﬂm S

<]
<2(M +m)a' ™ (1- x)(l_ jx

(3.24)
Now we estimate L, ,combining (3.19), (3.20) with
Lemma 2.1, we have

L =Jua (x.£)-ul (x.£)
_ 2¢(§)cosh(x|§|)_2¢5(§ )cosh (x| ||
2+aledre®)  2+alef+e) |
2
N PP +e_§)cosh(XIél)(co(é)—coa(é))H
) oAl g
o e9-e@)
x¢]
325sup£ij
Eell 1+(Ze‘§‘
<2607 (1~ x)(ijx .
1-x
(3.25)

Combining inequality (3.23), (3.24) with (3.25), if select

o N
a= v ,estimation (3.22) becomes

X X
<2(M +m)at (1_x)(ij + 260 (1_x)(ij
1 1-x
< 2c(2+ j51 M,
M
Here m and C are constant independent of 5 and M .

IV. CONCLUSION

In this paper, we discuss a Cauchy problem for the
homogeneous and nonhomogeneous Laplace equation by a
quasi-reversibility regularization method. In the first part, we
give a Cauchy problem for Laplace equation in a strip region,
and summarize some existing regularization methods to solve
this problem. In the second part, the homogeneous Laplace
equation is solved by a quasi-reversibility regularization
method, and the error estimation with a priori parameter
choice rule is obtained. In the third part, the nonhomogeneous
Laplace equation is discussed in the same way, and the
corresponding error estimate is obtained by the a priori
parameter selection rule. This paper only discussed the error
estimation under the a priori parameter selection rule. In the
following work, we will further discuss the error estimation by
the a posteriori parameter choice rules.
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